

Best practices for writing and running mixmode MPI and OpenMP codes on the Cray XE6

LBNL NERSC

Nicholas J Wright, Karl Fuerlinger, John Shalf

LBNL Computing Research Division

Hongzhang Shan, Tony Drummond, Andrew Canning

PPPL

Stephane Ethier

Cray Inc.

Nathan Wichmann, Marcus Wagner, Sarah Anderson, Ryan Olsen, Mike Aamodt

The Multicore era

- Moore's Law continues
- Traditional sources of performance improvement ending
 - Old Trend: double clock frequency every 18th months
 - New Trend: Double # cores every 18 months
- Power limits drive a number of Broader Technology Trends
 - Number Cores
 - Memory Capacity per core flat or
 - Memory Bandwidth per FLOP •
 - Network Bandwidth per FLOP

Hammond, Herb Sutter, and Burton Smith

The Multicore era

- Moore's Law continues
- Traditional sources of performance improvement ending
 - Old Trend: double clock frequency every 18th months
 - New Trend: Double # cores every 18 months

- 3x increase in system performance with no per-core performance improvement (hopper)
- 12x more cores in NERSC-6 (hopper) than NERSC-5 (franklin) (2 cores to 24 cores)
- Same or lower memory capacity per core on compute nodes
- Flat MPI-only model for parallelism will not scale
 - Need to transition to new durable model that can sustain massive growth in parallelism
 - Hopper changes are first step in a long-term technology trend
 - NERSC needs to take proactive role in guiding transition of user community

Nersc Long-Term Concerns for NERSC Users

NERSC COE

- Risks for NERSC and DOE User Community
 - Users will not be able to make effective user of hopper
 - Average job size will go down if users cannot scale
 - Users will be exposed to multiple-disruptive rewrites of their code in effort to stay head of technology curve
- As mitigation for this risk, NERSC created the Cray Center of Excellence in cooperation with Cray Inc.
 - Characterize performance of NERSC codes in context of emerging technology trends
 - Evaluate viable/candidate programming models to make more effective use of future machines (hopper first)
 - Develop training materials to guide the user transition to new programming model (map durable path to exascale)

NERSC COE: Project Plan

Phase 1: Prepare users for hopper

- NERSC-6 application benchmarks provide representative set of NERSC workload and broad cross-section of algorithms
- User hybrid OpenMP/MPI model because it is most mature
- Analyze performance of hybrid applications
- Work with USG to create training materials for hopper users to disseminate results

Phase 2: Prepare users for next decade

- Evaluate advanced programming models
- Identify durable approach for programming on path to exascale

NERSC-6 Applications Cover Algorithm and Science Space

Science areas	Dense linear algebra	Sparse linear algebra	Spectral Methods (FFT)s	Particle Methods	Structured Grids	Unstructured or AMR Grids
Accelerator Science		X	X IMPACT-T	X IMPACT-T	X IMPACT-T	X
Astrophysics	X	X MAESTRO	X	X	X MAESTRO	X MAESTRO
Chemistry	X GAMESS	X	X	X		
Climate			X CAM		X CAM	X
Combustion					X MAESTRO	X AMR Elliptic
Fusion	X	X		X GTC	X GTC	X
Lattice Gauge		X MILC	X MILC	X MILC	X MILC	
Material Science	X PARATEC		X PARATEC	X	X PARATEC	

OpenMP Hybrid Programming Basics

Benefits

- + Less Memory usage
- + Focus on # nodes (which is not increasing as fast) instead of # cores
- + Larger messages, less time in MPI
- + Attack different levels of parallelism than possible with MPI

Potential Pitfalls

- NUMA / Locality effects
- Synchronization overhead
- Inability to saturate network adaptor

Mitigations

- User training
- Code examples using *real* applications
- Hopper system configuration changes
- Feedback to Cray on compiler & system software development

What are the Basic Differences Between MPI and OpenMP?

Message Passing Model

- Program is a collection of processes.
 - Usually fixed at startup time
- Single thread of control plus private address space -- NO shared data.
- Processes communicate by explicit send/ receive pairs
 - Coordination is implicit in every communication event.
- MPI is most important example.

Shared Address Space Model

Science

- Threads coordinate by synchronizing on shared variables
- OpenMP is an example

Program is a collection of threads.

Can be created dynamically.

 Threads have private variables and shared variables

 Threads communicate implicitly by writing and reading shared variables.

10

Understanding Hybrid MPI/OPENMP Model

$$T(N_{MPI}, N_{OMP}) = t(N_{MPI}) + t(N_{OMP}) + t(N_{MPI}, N_{OMP}) + t_{serial}$$

count=G/N_{MPI}
Do i=1,count

count=G/N_{OMP} !\$omp do private (i) Do i=1,G

count=G/(N_{OMP}*N_{MPI}) !\$omp do private (i) Do i=1,G/N_{MPI}

Count=G

Do i=1,G

Department of Office of

Science

Important to Set Expectations

- OpenMP + MPI unlikely to be faster than pure MPI - but it will almost certainly use less memory
- Very important to consider your overall performance
 - individual kernels maybe slower with OpenMP but the code overall maybe faster
- Sometimes it maybe better to leave cores idle
 - #1 Memory Capacity
 - #2 Memory Bandwidth
 - #3 Network Bandwidth

Hopper Node Topology Understanding NUMA Effects

- Heterogeneous Memory access between dies
- "First touch" assignment of pages to memory.

2xDDR1333 channel 21.328 GB/s

3.2GHz x8 lane HT 6.4 GB/s bidirectional

3.2GHz x16 lane HT 12.8 GB/s bidirectional

- Locality is key (just as per Exascale Report)
- Only indirect locality control with OpenMP

Hopper Node Topology Understanding NUMA Effects

- Heterogeneous Memory access between dies
- "First touch" assignment of pages to memory.

2xDDR1333 channel 21.328 GB/s

3.2GHz x8 lane HT 6.4 GB/s bidirectional

3.2GHz x16 lane HT 12.8 GB/s bidirectional

- Locality is key (just as per Exascale Report)
- Only indirect locality control with OpenMP

Hopper Node Topology Understanding NUMA Effects

- Heterogeneous Memory access between dies
- "First touch" assignment of pages to memory.

2xDDR1333 channel 21.328 GB/s

3.2GHz x8 lane HT 6.4 GB/s bidirectional

3.2GHz x16 lane HT 12.8 GB/s bidirectional

Locality is key (just as per Exascale Report)

Launch threads on "NUMA Nodes" (see COE talk)

Stream Benchmark

```
Double a[N],b[N],c[N};
#pragma omp parallel for
#endif
  for (j=0; j<VectorSize; j++) {
   a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
   a[j]=b[j]+d*c[j];
           Office of
```


Stream Benchmark

Double a[N],b[N],c[N};

```
. . . . . . .
```

```
#pragma omp parallel for
#endif
  for (j=0; j<VectorSize; j++) {
    a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {</pre>
   a[j]=b[j]+d*c[j];
           Office of
```


Stream NUMA effects - Hopper

Why does it matter? - NUMA mem latency

Studying the N6 Application Benchmarks

NERSC-6 Benchmark Codes

- Gyrokinetic Toroidal Code (GTC)
- Parallel Total Energy Code (PARATEC)
- Finite Volume Community Atmosphere Model (fvCAM)

NERSC-6 Applications Cover Algorithm and Science Space

Science areas	Dense linear algebra	Sparse linear algebra	Spectral Methods (FFT)s	Particle Methods	Structured Grids	Unstructured or AMR Grids
Accelerator Science		X	X IMPACT-T	X IMPACT-T	X IMPACT-T	X
Astrophysics	X	X MAESTRO	X	X	X MAESTRO	X MAESTRO
Chemistry	X GAMESS	X	X	X		
Climate			X CAM		X CAM	X
Combustion					X MAESTRO	X AMR Elliptic
Fusion	X	X		X GTC	X GTC	X
Lattice Gauge		X MILC	X MILC	X MILC	X MILC	
Material Science	X PARATEC		X PARATEC	X	X PARATEC	

Breaking Down the Runtime Tools

- IPM Integrated Performance Monitoring http://ipm-hpc.sourceforge.net
 - Time in MPI, Messages sizes, Communication
 Patterns
 - Simple Interface to PAPI
 - OpenMP profiler module added
- OMPP OpenMP Profiler

http://www.cs.utk.edu/~karl/ompp.html

- Time Spent in OpenMP per region, Load imbalance, Overhead
- Also Interfaces to PAPI

Default

##	#IPM2v0.xx#### <mark>#</mark> ##############################						
#							
#	command	:	/tmp/work/nwri	.ght/for_nick/	/CAM_1.0/ru	ın/	/benchmark/bld/cam.ipm
#	start	:	Tue Jun 15 10:	36:57 2010	host	:	nid21827
#	stop	:	Tue Jun 15 10:	49:15 2010	wallclock	:	737.20
#	mpi_tasks	:	20 on 20 nodes	;	%comm	:	23.56
#	omp_thrds	:	12		%omp	:	71.08
#	mem [GB]	:	0.00		gflop/sec	:	0.00
#							
#		:	[total]	<avg></avg>	n	nin	max
#	wallclock	:	14738.19	736.91	736.	85	737.20
#	MPI	:	3471.63	173.58	138.	00	212.08
#	OMP	:	10476.12	523.81	488.	26	548.34
#	OMP idle	:	0.00	0.00	0.	00	0.00
#	‱all	:					
#	MPI	:		23.56	18.	73	28.78
#	OMP	:		71.08	66.	26	74.41
#	#calls	:					
#	MPI	:	7268732	363436	2923	369	411990
#	mem [GB]	:	0.00	0.00	0.	00	0.00
#							
#				[time]	[count]		<%wall>
#	OMP_PARALI	Εl	L	10476.12	4911120)	71.08
#	# MPI_Waitall			1094.59	1789424		7.43
#	MPI_Wait			546.18	1245742	2	3.71
	MPI_Alltoo	ıll	lv	501.70	19300)	3.40
#	MPI_Bcast			433.16	11980)	2.94
48	MDT Pannie			27E 12	20000	à.	2 55

Nersc Gyrokinetic Toroidal Code (GTC)

- 3D Particle-in-cell (PIC)
- Used for simulations of non-linear gyrokinetic plasma microturbulence
- Paralleised with OpenMP and MPI.
- ~15K lines of Fortran 90
- OpenMP version 56 parallel regions/loops (almost all)
- 10 loops required different implementation for OpenMP version (~250 lines)

Nersc Particle-In-Cell (PIC) simulations

- Popular method for numerical simulation of manybody systems.
- Often implemented from first principles without the need of an approximate equation of state
- Applications: plasma modeling, Astrophysics and modeling of debris fields from explosions
- 1/3 of all CPU hours at NERSC

SC10 GTC Autotuning

GTC PIC Steps

 Scatter: deposit charges on the grid (interpolate to nearest neighbor)

Solve Poissonequation: (local relaxation steps)

- Gather: forces on each particle from potential
- Push: move particles
- repeat

3D Torus

theta

Important Routines in GTC

Poisson – charge distribution → Electric field

Charge – deposits charge on Grid

Smooth – smoothes charge on grid

Pusher – Moves the Ions/Electrons

Field – Calculates Forces due to Electric

field

Shifter – Exchanges between MPI tasks

Nersc GTC – Hopper – Large Test Case

Small Test Case – 96 cores – Breakdown

Small Test Case – 96 cores – Breakdown

Small Test Case – 96 cores – Breakdown

Small Case - Performance Breakdown

GTC: Communication Analysis

Strong Scaling

Strong Scaling cont.

PARATEC - First Principles Electronic Structure Calculations

- First Principles: Full quantum mechanical treatment of electrons
- Gives accurate results for Structural and Electronic Properties of Materials, Molecules, Nanostructures
- Computationally very expensive (eg. grid of > 1 million points for each electron)
- Density Functional Theory (DFT) Plane Wave Based (Fourier) methods probably largest user of Supercomputer cycles in the world.
- ~13% total NERSC workload including single "biggest" code VASP
- PARAllel Total Energy Code (PARATEC) proxy in the

ab initio Density Functional Theory (Kohn 98 Nobel Prize)

Many Body Schrodinger Equation (exponential scaling)

$$\left\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,l} \frac{Z}{|r_{i} - R_{I}|}\right\} \Psi(r_{1},...r_{N}) = E\Psi(r_{1},...r_{N})$$

Kohn Sham Equation (65): The many body ground state problem can be mapped onto a single particle problem with the same electron density and a different effective potential (cubic scaling).

Use Local Density Approximation

$$\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|}dr' + \sum_{I} \frac{Z}{|r-R_{I}|} + V_{XC}\}\psi_{i}(r) = E_{i}\psi_{i}(r)$$

$$\rho(r) = \sum_{i} |\psi_{i}(r)|^{2} = |\Psi(r_{1},...r_{N})|^{2}$$

Load Balancing & Parallel Data Layout

- Wavefunctions stored as spheres of points (100-1000s spheres for 100s atoms)
- Data intensive parts (BLAS) proportional to number of Fourier components
- Pseudopotential calculation, Orthogonalization scales as N³ (atom system)
- FFT part scales as N²logN

Data distribution: load balancing constraints (Fourier Space):

- each processor should have same number of Fourier coefficients (N³ calcs.)
- each processor should have complete columns of Fourier coefficients (3d FFT)

Basic algorithm & Profile of Paratec

- Orthogonalization ZGEMM
 - $-N^3$
- FFT
 - N In N

At small concurrencies ZGEMM dominates at large FFT

What OpenMP can do for Paratec?

ZGEMM very amenable to threading

- FFT also
 - Can thread FFT library calls themselves
 - Can 'package' individual FFT's so that messages are combined -> more efficient communication

PARATEC – Hopper

Nersc Paratec MPI+OpenMP Performance

Parallel "ZGEMM"

FFT Breakdown

Finite Volume Community Atmospheric Model- fvCAM

- Dynamics and physics use separate decompositions
 - physics utilizes a 2D longitude/latitude decomposition
 - dynamics utilizes multiple decompositions
 - FV dynamics 2D block latitude/vertical and 2D block longitude/latitude
- Decompositions are joined with transposes
- Each subdomain is assigned to at most one MPI task
- Additional parallelism via OpenMP ~500 OpenMP directives over 72 .F90 files

fvCAM coordinate system

- 576x361x28 grid (Longitude x Latitude x Vertical) (X Y Z)
- Original problem definition 240 MPI tasks - 60(Y) x 4(Z,X) decomposition
- Dynamics uses Lat-Vert and Lat-Long
- Physics uses Lat-Long decomposition

fvCAM coordinate system

- 576x361x28 grid (Longitude x Latitude x Vertical) (X Y Z)
- Original problem definition 240 MPI tasks - 60(Y) x 4(Z,X) decomposition
- Dynamics uses Lat-Vert and Lat-Long
- Physics uses Lat-Long decomposition

fvCAM - Hopper

fvCAM MPI+OpenMP Performance

fvCAM Physics

OpenMP threads / MPI tasks

CAM: Physics

 Columnar processes (typically parameterized) such as precipitation, cloud physics, radiation, turbulent mixing lead to large amounts of work per thread and high efficiency

```
!$OMP PARALLEL DO PRIVATE (C)
do c=begchunk, endchunk
    call tphysbc (ztodt, pblht(1,c), tpert(1,c), snowhland
    (1,c),phys_state(c),phys_tend(c), pbuf,fsds(1,c)....
enddo
```


fvCAM - Dynamics

OpenMP MPI

OpenMP threads / MPI tasks 57

Summary

- OpenMP + MPI can be faster than pure MPI and is often comparable in performance
- Beware NUMA!
 - Don't use >6 OpenMP threads unless absolutely necessary or you can 'first-touch' perfectly
- Beware !\$OMP critical !
 - Unless you absolutely have to
- Need Holistic view of your codes performance bottlenecks
 - Adding more cores may not help –transpose

1. Should I use OpenMP?

- Need to save memory and have duplicated structures across MPI tasks
- Routine that parallelises with OPENMP only –
 Poisson routine in GTC
- Reduction operations charge & push in GTC
- Threads can be hard locks, race conditions

2. How hard is it to change my code?

- Easier than serial to MPI
- Easier than UPC/ CAF ?

3. How do I know if it's working or not?

Lessons for NERSC Users-Longer Term

- Are you going to tell me in 3 years that I should have used CAF/UPC/Chapel?
- Uncertainty about Future Machine model
 - GPU programming model streaming
 - Many lightweight cores
- OpenMP as it stands today is not ideally suited to either model
 - Mend it? Broken ?? (GPU flavor of OMP)

Advanced OpenMP techniques

GTC - Shifte Routine

- Which e⁻ to move?
- Pack e⁻ to be moved
- Communicate # e⁻ to move
- Repack non-moving e⁻
- Send/Recv e⁻
- And again....

Shifte Routine

- Which e⁻ to move? ✓
- Pack e⁻ to be moved
- Communicate # e⁻ to move X
- Repack non-moving e⁻
- Send/Recv e⁻ X
- And again.....

OPENMP tasking

Idle Threads Can
Execute Tasks in pool

Executing Thread Encountering Task Region Adds Task to pool #pragma omp task

Tasking - Results

